On rearrangement invariant and majorant hulls of averages of rearrangement invariant and majorant ideals
نویسندگان
چکیده
منابع مشابه
Subspaces of Rearrangement-invariant Spaces
We prove a number of results concerning the embedding of a Banach lattice X into an r. i. space Y. For example we show that if Y is an r. i. space on [0, oo) which is/7-convex for some/? > 2 and has nontrivial concavity then any Banach lattice X which is r-convex for some r > 2 and embeds into Y must embed as a sublattice. Similar conclusions can be drawn under a variety of hypotheses on Y; if ...
متن کاملThe Level Function in Rearrangement Invariant Spaces
An exact expression for the down norm is given in terms of the level function on all rearrangement invariant spaces and a useful approximate expression is given for the down norm on all rearrangement invariant spaces whose upper Boyd index is not one.
متن کاملDiscretization and Anti-discretization of Rearrangement-invariant Norms
Abstract We develop a new method of discretization and anti-discretization of weighted inequalities which we apply to norms in classical Lorentz spaces and to spaces endowed with the so-called Hilbert norm. Main applications of our results include new integral conditions characterizing embeddings Γp(v) ↪→ Γq(w) and Γp(v) ↪→ Λq(w) and an integral characterization of the associate space to Γp(v),...
متن کاملThe Natural Rearrangement Invariant Structure on Tensor Products
We prove that the only rearrangement invariant (r.i.) spaces for which there exists a crossnorm verifying that the tensor product of these spaces preserves the “natural” r.i. space structure, in the sense that it makes the multiplication operator B a topological isomorphism, are the Lp spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1992
ISSN: 0022-247X
DOI: 10.1016/0022-247x(92)90365-k